ORCHIDEE-CN optimization

Optimization

Algorithm : genetic (Monte Carlo)
Observations : FLUXNET data (78 sites), Net Ecosystem Exchange (NEEt) and Latent Heat Flux (Qle)
Optimization : multi-site for each PFT
Number of iterations : 20
Population (number of parameter sets retained during optimization) : 30

Virtal Optimized Parameters

K_LATOSA_MIN = K_LATOSA_MAX * RATIO_KLATOSA
K_ROOT = (K_LATOSA_MAX_PRIOR / K_LATOSA_MAX)**2 * PARAM_KROOT
CN_LEAF_MIN = CN_LEAF_MAX * RATIO_CNLEAF
CN_LEAF_INIT = CN_LEAF_MIN + (CN_LEAF_MAX - CN_LEAF_MIN) / 2.

Outputs

PFT2      PFT5      PFT6      PFT8     

PFT2

PARAMETERpriorminmaxpost
CN_LEAF_MAX__0000245.5306059.483
EXT_COEFF_N__000020.150.10.30.291
FCN_ROOT__000020.860.61.20.679
FCN_WOOD__000020.0870.060.120.12
K_LATOSA_MAX__0000217000120002200016184.656
K_N_min__0000130204020.017
K_N_min__0000230204022.448
LOW_K_N_min__000010.00020.000140.000252.153e-4
LOW_K_N_min__000020.00020.000140.000252.204e-4
NUE_OPT__0000222152928.264
PARAM_KROOT__000021.0E-87.0E-91.3E-89.672e-9
RATIO_CNLEAF__000020.351650.250.50.472
RATIO_KLATOSA__000020.970590.710.78
SLAINIT__000020.0260.0180.0340.022
VMAX_UPTAKE__000013243.889
VMAX_UPTAKE__000023243.322
K_LATOSA_MIN__0000216500.0384002200012618.188
K_ROOT__000021.000e-81.405e-87.762e-91.067e-8
CN_LEAF_MIN__00002167.53028.095
CN_LEAF_INIT__0000230.7518.754543.789
Cost function reduction10.867



PFT5

PARAMETERpriorminmaxpost
CN_LEAF_MAX__0000545.5306057.729
EXT_COEFF_N__000050.150.10.30.15
FCN_ROOT__000050.860.61.21.017
FCN_WOOD__000050.0870.060.120.114
K_LATOSA_MAX__0000541053300005000030102.155
K_N_min__0000130204024.803
K_N_min__0000230204027.945
LOW_K_N_min__000010.00020.000140.000252.210e-4
LOW_K_N_min__000020.00020.000140.000251.734e-4
NUE_OPT__0000533234323.497
PARAM_KROOT__000051.6E-91.1E-92.1E-92.074e-9
RATIO_CNLEAF__000050.351650.250.50.32
RATIO_KLATOSA__000050.219230.150.30.284
SLAINIT__000050.030.0210.0390.037
VMAX_UPTAKE__000013243.41
VMAX_UPTAKE__000023242.728
K_LATOSA_MIN__000059000.049194500150008557.203
K_ROOT__000051.600e-92.060e-91.416e-93.858e-9
CN_LEAF_MIN__00005167.53018.449
CN_LEAF_INIT__0000530.7518.754538.089
Cost function reduction10.553



PFT6

PARAMETERpriorminmaxpost
CN_LEAF_MAX__0000645.5306052.384
EXT_COEFF_N__000060.150.10.30.152
FCN_ROOT__000060.860.61.20.63
FCN_WOOD__000060.0870.060.120.072
K_LATOSA_MAX__0000680005500105005618.018
K_N_min__0000130204036.358
K_N_min__0000230204024.2
LOW_K_N_min__000010.00020.000140.000251.977e-4
LOW_K_N_min__000020.00020.000140.000251.426e-4
NUE_OPT__0000633234329.014
PARAM_KROOT__000066.27E-84.4E-88.2E-88.078e-8
RATIO_CNLEAF__000060.351650.250.50.452
RATIO_KLATOSA__000060.750.510.86
SLAINIT__000060.0390.0270.0510.049
VMAX_UPTAKE__000013242.543
VMAX_UPTAKE__000023243.448
K_LATOSA_MIN__0000660002750105004834.103
K_ROOT__000066.270e-89.309e-84.760e-81.638e-7
CN_LEAF_MIN__00006167.53023.675
CN_LEAF_INIT__0000630.7518.754538.03
Cost function reduction10.838



PFT8

PARAMETERpriorminmaxpost
CN_LEAF_MAX__0000845.5306050.91
EXT_COEFF_N__000080.150.10.30.179
FCN_ROOT__000080.860.61.20.786
FCN_WOOD__000080.0870.060.120.091
K_LATOSA_MAX__0000830000200004000020058.271
K_N_min__0000130204036.721
K_N_min__0000230204035.475
LOW_K_N_min__000010.00020.000140.000252.029e-4
LOW_K_N_min__000020.00020.000140.000251.965e-4
NUE_OPT__0000833234329.236
PARAM_KROOT__000082.8E-82.0E-83.6E-83.316e-8
RATIO_CNLEAF__000080.351650.250.50.465
RATIO_KLATOSA__000080.960.710.788
SLAINIT__000080.0370.0260.0480.04
VMAX_UPTAKE__000013242.098
VMAX_UPTAKE__000023242.87
K_LATOSA_MIN__0000828800140004000015810.709
K_ROOT__000082.800e-84.500e-82.025e-87.417e-8
CN_LEAF_MIN__00008167.53023.653
CN_LEAF_INIT__0000830.7518.754537.281
Cost function reduction10.853