CTESSEL developments

Project CAMS41
Optimization of the relationship between CHTESSEL GPP and SIF data [per REGION and per SEASON]

PFT1 (Crops, mixed farming)
PFT2 (Short grass)
PFT3 (Evergreen needleleaf)
PFT4 (Deciduous needleleaf)
PFT5 (Deciduous broadleaf)
PFT6 (Evergreen broadleaf)
PFT7 (Tall grass)
PFT9 (Tundra)
PFT10 (Irrigated crops)
PFT11 (Semidesert)
PFT13 (Bogs and marshes)
PFT16 (Evergreen shrubs)
PFT17 (Deciduous shrubs)
PFT18 (Mixed forest - Wood)
PFT19 (Interrupted forest)

  1. Optimize \( (a,b) \) per CTESSEL PFT from the relationship
    \( SIF_\mathsf{SAT} = a \cdot GPP_\mathsf{Jung} + b \)
  2. Calculate inverse coefficients \( (\alpha,\beta) \)
    \( \alpha = \frac{1}{a} \)
    \( \beta = -\frac{b}{a} \)
  3. Compute CTESSEL SIF
    \( SIF_\mathsf{CTESSEL} = a \cdot GPP_\mathsf{CTESSEL} + b\)
  1. Compare SIF for CTESSEL vs SAT
    \( \Delta SIF = SIF_\mathsf{SAT} - SIF_\mathsf{CTESSEL} \)
  2. Convert difference from SIF to GPP
    \( \Delta GPP_\mathsf{SAT} = \alpha \cdot \Delta SIF + \beta \) (old)
    \( \Delta GPP_\mathsf{SAT} = \alpha \cdot \Delta SIF \) (new)
  3. Compare with GPP difference
    \( \Delta GPP = GPP_\mathsf{Jung} - GPP_\mathsf{CTESSEL} \)

PFT maps
SIF data
Posterior data for GOSAT
a_post
REGIONYEARWINTERSPRINGSUMMERAUTUMN
010.1160.1330.1270.1080.137
01_N0.1090.1660.1170.110.153
01_T0.1230.1270.1310.1210.143
01_S0.120.1270.1430.1340.112
b_post
REGIONYEARWINTERSPRINGSUMMERAUTUMN
010.03670.03240.02320.03520.0414
01_N0.03140.02220.01680.02170.0364
01_T0.05790.07880.03290.04290.0397
01_S0.0510.01770.05140.04160.0609
n_points
REGIONYEARWINTERSPRINGSUMMERAUTUMN
01248565850666761026237
01_N170873941446143784307
01_T4213112812008401045
01_S35567811006884885
RMSD (SIFGOSAT vs apostGPPJung + bpost)
REGIONMODEYEARWINTERSPRINGSUMMERAUTUMN
01all data0.1870.1980.1850.1820.182
seasonal0.1860.1970.1850.1810.181
01_Nall data0.1790.1960.180.1720.17
seasonal0.1790.1960.1790.1720.168
01_Tall data0.2040.1940.1910.2290.207
seasonal0.2030.1930.190.2280.206
01_Sall data0.1920.2030.1940.1670.204
seasonal0.1910.2020.1920.1670.204
Correlation (SIFGOSAT vs apostGPPCTESSEL + bpost)
REGIONMODEYEARWINTERSPRINGSUMMERAUTUMN
01all data0.4430.4270.3760.4130.431
seasonal0.4430.4270.3760.4130.431
01_Nall data0.4280.1450.3530.3790.324
seasonal0.4250.1450.3530.3790.324
01_Tall data0.4350.3390.410.4410.451
seasonal0.4260.3390.410.4410.451
01_Sall data0.4240.4720.3730.2390.355
seasonal0.4140.4720.3730.2390.355

Posterior data for GOME2-Joiner
a_post
REGIONYEARWINTERSPRINGSUMMERAUTUMN
010.1590.1470.1660.1520.162
01_N0.1860.2620.2080.1590.216
01_T0.1220.09770.110.1330.134
01_S0.1480.1490.1650.1580.139
b_post
REGIONYEARWINTERSPRINGSUMMERAUTUMN
010.06750.05630.04640.09480.078
01_N0.05180.02370.01850.1030.0569
01_T0.10.1170.09310.07630.114
01_S0.0820.06180.05960.07550.121
n_points
REGIONYEARWINTERSPRINGSUMMERAUTUMN
0124060044595628536696666186
01_N14509120878388754311542223
01_T5359913232134931339513479
01_S4191010485104851045610484
RMSD (SIFGOME2-Joiner vs apostGPPJung + bpost)
REGIONMODEYEARWINTERSPRINGSUMMERAUTUMN
01all data0.2020.2040.1990.2180.186
seasonal0.2020.20.1950.2250.189
01_Nall data0.2070.1980.2040.2440.171
seasonal0.2060.1970.2020.2430.176
01_Tall data0.2080.1940.1990.2360.21
seasonal0.2080.1940.1950.2350.216
01_Sall data0.2020.2260.1960.1730.215
seasonal0.2030.2180.1950.1730.224
Correlation (SIFGOME2-Joiner vs apostGPPCTESSEL + bpost)
REGIONMODEYEARWINTERSPRINGSUMMERAUTUMN
01all data0.740.710.6840.7220.719
seasonal0.7420.710.6840.7220.719
01_Nall data0.7780.3810.7140.7140.642
seasonal0.7820.3810.7140.7140.642
01_Tall data0.7040.5960.6860.690.722
seasonal0.70.5960.6860.690.722
01_Sall data0.6630.7160.6630.4150.555
seasonal0.6580.7160.6630.4150.555

GPP
SIF (all data optimization)
SIF (seasonal optimization)
Delta GPP (old)
Delta GPP (new)