IMPLEMENTATION OF THE ORCHIDEE PHOTOSYNTHESIS SCHEME IN CTESSEL

Laboratoire des sciences du climat & de l'environnement CAMS_41 project

LSCE: F. Maignan & P. Peylin

Science Partners: V. Bastrikov

ECMWF: A. Agusti-Panareda & S. Boussetta

YIN & STRUIK ANALYTICAL SOLUTION

NJAS - Wageningen Journal of Life Sciences 57 (2009) 27-38

C_3 and C_4 photosynthesis models: An overview from the perspective of crop modelling

X. Yin*, P.C. Struik

Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, P.O. Box 430, NL-6700 AK Wageningen, The Netherlands

- Based on Yin & Struik (2019)
- Analytical solution of the 3-equation system linking assimilation, stomatal conductance and intercellular CO₂ concentration

THE FARQUHAR, VON CAEMMERER AND BERRY (FVCB) MODEL

Fig. 1. An idealized curve for the response of net CO_2 assimilation rate (*A*) in C_3 plants to intercellular CO_2 partial pressure (*C*_i), in which 12 data points are shown. Points 1–6 locate within the range of the Rubisco-limited rate (*A*_c) whereas points 7–12 are within the range of electron transport-limited rate (*A*_j). The portions of each curve without data points are the extended parts as given by the *A*_c and *A*_j equation, respectively. The minimum of *A*_c and *A*_j gives the modelled CO_2 response curve as indicated by the 12 data points.

The FvCB model predicts A as the minimum of the Rubiscolimited rate of CO_2 assimilation (A_c) and the electron transportlimited rate of CO_2 assimilation (A_i):

 $A = \min(A_c, A_i)$

An illustration of the two parts of limitations along the CO_2 response curves is given in Fig. 1. Sharkey et al. [10] have drawn attention to a third limitation by triose phosphate utilization, which is not discussed here because it comes into play only occasionally at very high CO_2 levels.

The value of A_c is calculated as a function of the maximum carboxylation capacity of Rubisco (V_{cmax}) by:

$$A_{\rm c} = \frac{(C_{\rm c} - \Gamma_{*})V_{\rm c max}}{C_{\rm c} + K_{\rm mC}(1 + O/K_{\rm mO})} - R_{\rm d}$$
(2)

where C_c is the CO₂ partial pressure at the carboxylating sites of Rubisco, K_{mC} and K_{mO} are Michaelis–Menten constants of Rubisco for CO₂ and O₂, respectively, and Γ_* is the CO₂ compensation point in the absence of day respiration (R_d).

In the calculation of A_j , the FvCB model assumes 100% noncyclic e⁻ transport, thus excluding cyclic e⁻ transport around PSI (CET). There are two widely used forms of the equation for electron transport-limited rate of photosynthesis:

$$A_{j} = \frac{(C_{c} - \Gamma_{*})J}{4C_{c} + 8\Gamma_{*}} - R_{d}$$
(3a)
$$A_{j} = \frac{(C_{c} - \Gamma_{*})J}{4.5C_{c} + 10.5\Gamma_{*}} - R_{d}$$
(3b)

The relationship between e^- transport rate (J) in Eqs. (3a), (3b) and irradiance was first described as a rectangular hyperbola [11], using quantum yield of e^- transport under limiting light ($\alpha_{(LL)}$) and the maximum capacity of e^- transport (J_{max}). Following Farquhar and Wong [12], most applications of the FvCB model, however, describe *J* as a non-rectangular hyperbolic function of irradiance by:

$$J = \frac{\left(\alpha_{(\text{LL})}I_{\text{abs}} + J_{\text{max}} - \sqrt{\left(\alpha_{(\text{LL})}I_{\text{abs}} + J_{\text{max}}\right)^2 - 4\theta J_{\text{max}}\alpha_{(\text{LL})}I_{\text{abs}}}\right)}{2\theta}$$
(4)

Α

S

S

Μ

Α

0

Ν

С

3

(1)

where θ is the convexity of the response curve of *J* to light absorbed by photosynthetic pigments (I_{abs}). Equations like Eq. (4) that describe the light response of e⁻ transport rate mimic well the photosynthetic down-regulation induced by high light levels via mechanisms such as non-photochemical quenching and chloroplast avoidance movement [13]. The theoretical maximum value for $\alpha_{(LL)}$ is 0.5 mol electron per mol photon absorbed [3] because one quantum must be absorbed by each of the two photosystems to move an electron from the level of H₂O to that of NADP⁺. However, in actual applications (e.g., [14–17]), $\alpha_{(LL)}$ has been empirically adjusted to a lower value to agree with a measured quantum efficiency for CO₂ uptake that is often lower than that expected from the theoretical maximum.

The temperature dependence of R_d and kinetic properties of Rubisco (involving three parameters V_{cmax} , K_{mC} and K_{mO}) in Eq. (2) is described by an Arrhenius function normalized with respect to their values at 25 °C:

 $Parameter = Parameter_{25}e^{(T-25)E/[298R(T+273)]}$

(5)

where *T* is leaf temperature; *E* is the activation energy, defining the responsiveness of the relevant parameter to temperature; *R* is the universal gas constant. A modified Arrhenius function is used to describe the optimum response of other parameters (e.g., J_{max}) to temperature as [17]:

 $Parameter = Parameter_{25}e^{(T-25)E/[298R(T+273)]}$

$$\times \frac{1 + e^{(298S - D)/(298R)}}{1 + e^{[(T+273)S - D]/[R(T+273)]}}$$

where *S* is an entropy term; *E* and *D* are the energies of activation and deactivation, defining the responsive shape of the suband supra-optimal ranges, respectively. June et al. [18] described an

A coupled modelling of leaf photosynthesis and stomatal conductance has been reported frequently in the literature (e.g., [16,46]). Few whole-plant modelling studies have considered gm as a necessary term of the photosynthesis models [39]. Here we incorporate g_b (boundary-layer conductance), g_s and g_m into our modelling framework. First, on the basis of several existing models, we propose the following phenomenological sub-model for gs:

$$g_{\rm s} = g_0 + \frac{A + R_{\rm d}}{C_{\rm i} - C_{\rm i*}} f_{\rm vpd} \tag{15}$$

0

Ν

D

U

С

Т

Α

Ν

С

Ε

S

(15a)

where g_0 is the residual stomatal conductance if the irradiance approaches zero, C_{i^*} is the C_i -based CO₂ compensation point in the absence of R_d (by definition $C_{i*} = \Gamma_* - R_d/g_m$), and f_{vpd} is the function for the effect of leaf-to-air vapour pressure difference (VPD), which is not yet understood sufficiently and may be described empirically as:

$$f_{\rm vpd} = \frac{1}{[1/(a_1 - b_1 \text{VPD}) - 1]}$$

where a_1 and b_1 are empirical constants. Eq. (15) is consistent with the finding that stomata may sense C_i [47]. Furthermore, unlike the model of Leuning et al. [16], Eq. (15) uses $(A + R_d)$ instead of A to avoid a possible negative g_s below the light compensation point. Unlike the model of Dewar [48], Eq. (15) predicts a non-zero g_s if $C_i = C_{i^*}$. It also differs from the model of Tuzet et al. [46] in that there is no need to calculate Γ -the CO₂ compensation point in the presence of R_d .

The following equations can be written, according to Fick's first law of diffusion for CO₂ transfer along the path from C_a to C_c:

$$C_{i} = C_{a} - A\left(\frac{1}{g_{b}} + \frac{1}{g_{s}}\right)$$
(16)
$$C_{c} = C_{i} - \frac{A}{g_{m}}$$
(17)

Fig. 4. Micrograph of the abaxial surface of a typical leaf, illustrating the pathway of CO₂ transfer from ambient air (C_a) through leaf surface (C_s) and intercellular air spaces (C_i) to the Rubisco carboxylation-sites in chloroplasts (C_c) . Boundary-layer conductance (g_b) , stomatal conductance (g_s) , and mesophyll conductance (g_m) are indicated. Revised from Flexas et al. [39].

Assimilation C4 plant species

Fig. 5. Scheme of the C₄ photosynthesis model based on von Caemmerer and Furbank [9]. After passing the stomatal conductance (g_s) and entering the mesophyll cell, CO₂ is fixed by phosphoenolpyruvate (PEP) carboxylase at the rate of V_p . The formed C₄ acid crosses a bundle-sheath conductance (g_{bs}) and is decarboxylated at the same rate V_p . The released CO₂ either leaks back to the mesophyll cell (L) or can be fixed at the bundle-sheath cell by Rubisco at the rate V_c in the photosynthetic carbon reduction cycle (PCR – the normal C₃ cycle). Part of the CO₂ is again released by the photosynthetic carbon oxidation (PCO) cycle at half the rate of Rubisco oxygenation (V_o). CO₂ can also be released in the mesophyll and bundle sheath from mitochondrial respiration (R_m and R_s), which together make the total day respiration rate R_d .

Fig. 3. The *Z* scheme for photosynthetic thylakoid reactions showing linear (solid arrows), cyclic and pseudocyclic (dashed arrows) electron transport routes. From reduced ferredoxin, a fraction, f_{cyc} , of the electrons follows the cyclic mode around PSI. Another fraction, f_{pseudo} , of the electrons that have passed PSI follows the pseudocyclic mode for supporting processes such as the water–water cycle (WWC, see [69]), or nitrite reduction, or other minor metabolic processes. The remaining fraction, $1 - f_{cyc} - f_{pseudo}$, is transferred to NADP⁺—the terminal acceptor of the linear electron transport for generating NADPH in support of CO₂ reduction or photorespiration. The efficiency of ATP synthesis along the chain depends on the operation of the Q-cycle. The scheme shows that a fraction, f_Q , of the electrons followed the Q-cycle (dotted arrow) through the concerted action of the Rieske FeS and b_6 of the cytochrome $b_6 f$ complex, and the remaining fraction, $1 - f_Q$, is transferred directly towards plastocyanin (Pc). Chl, chlorophyll; $h\nu$, photons absorbed either by PSI or by PSII. Redrawn from Yin et al. [70].

STRESS FUNCTION FOR VEGETATION

 $u_s(1)=0$ $u_s(i>1) = n_{root}(i) \cdot F_w(i)$ $F_w(i) = max(0,min(1, (W_i-W_w)/(W_{\%}-W_w)))$

 n_{root} : mean root density in layer i $n_{root} = \int_{hi} R(z)dz / \int_{htot} R(z)dz$ $R(z) = exp(-c_j z)$ c_j depends on the PFT

W_w = wilting point W_f = field capacity

 $AWC = W_{f}W_{w}$

```
W<sub>%</sub> : moisture at which us becomes 1 (no stress)
```

 $W_{\%} = W_w + p_{\%} AWC$

In contantes_mtc.f90: c_j = humcste In constantes_soil.f90: p_% = pcent = (/ 0.8, 0.8, 0.8 /)

Hydrology and Earth System Sciences, 2(2-3), 239-255 (1998) © EGS

Modelling root water uptake in a complex land surface scheme coupled to a GCM

Patricia de Rosnay and Jan Polcher

Laboratoire de Météorologie Dynamique du CNRS, Paris, France

STRESS FUNCTION FOR VEGETATION

Table 8.4 Root distribution per vegetation type (in %) over the four layers. Vegetation indexes refer to Table 8.1.

Vegetation																
index	1	2	3	4	5	6	7	8	9	10	11	13	16	17	18	19
Layer 1	24	35	26	26	24	25	27	100	47	24	17	25	23	23	19	19
Layer 2	41	38	39	38	38	34	27	0	45	41	31	34	36	36	35	35
Layer 3	31	23	29	29	31	27	27	0	8	31	33	27	30	30	36	36
Layer 4	4	4	6	7	7	14	9	0	0	4	19	11	11	11	10	10

vapour deficit $D_{\rm a}$ and a minimum stomatal resistance $r_{\rm s,min}$, following ? given by

$$r_{\rm c} = \frac{r_{\rm S,min}}{LAI} f_1(R_{\rm s}) f_2(\bar{\theta}) f_3(D_{\rm a})$$
(8.9)

 f_1 is a hyperbolic function of downward short-wave radiation only so that

$$\frac{1}{f_1(R_{\rm s})} = \min\left[1, \frac{bR_{\rm s} + c}{a(bR_{\rm s} + 1)}\right]$$
(8.10)

where a = 0.81, $b = 0.004 \text{ W}^{-1}\text{m}^2$ and c = 0.05.

Function f_2 is defined as

$$\frac{1}{f_2(\bar{\theta})} = \begin{cases} 0 & \bar{\theta} < \theta_{\rm pwp} \\ \frac{\bar{\theta} - \theta_{\rm pwp}}{\theta_{\rm cap} - \theta_{\rm pwp}} & \theta_{\rm pwp} \le \bar{\theta} \le \theta_{\rm cap} \\ 1 & \bar{\theta} > \theta_{\rm cap} \end{cases}$$
(8.11)

where the soil moisture at permanent wilting point and at field capacity, θ_{pwp} and θ_{cap} , respectively, are defined in Table 8.9. $\bar{\theta}$ is a weighted average of the unfrozen soil water given by

$$\bar{\theta} = \sum_{k=1}^{4} R_k \max[f_{\text{liq},k}\theta_k, \theta_{\text{pwp}}]$$
(8.12)

where R_k is the fraction of roots in layer k and the fraction of unfrozen soil water, $f_{\text{liq},k} = 1 - f_{\text{fr}}(T_k)$, is a parametrized function of the soil temperature of layer k, T_k , as specified in Subsection 8.5.2. Table 8.1 lists the coefficients a_r and b_r which are used to calculate the root fraction R_k according to ?:

$$R_k = 0.5[\exp(-a_r z_{k-1/2}) + \exp(-b_r z_{k-1/2}) - \exp(-a_r z_{k+1/2}) - \exp(-b_r z_{k+1/2})]$$
(8.13)

CTESSEL very similar 4-layer hydrology/root profile

CTESSEL variable PF2 is used in the Farquhar module.

CANOPY DISCRETIZATION/SCALING

Canopy is discretized from top to bottom into several Leaf Area Index (LAI) levels.

For a given LAI level l:

Light is attenuated through the canopy following a Beer-Lambert law:

$$I(l) = I_0 \cdot e^{-k \cdot LAI(l)}$$

k extinction coefficient k = 0.5 (Monsi and Saeki, 1953)

 $V_{c/j}$ is scaled into the canopy due to reduction of **nitrogen** (Johnson and Thornley, 1984):

$$V_{c/j}(l) = V_{c/j \lim} \cdot (1 - 0.7 \cdot (1 - e^{-k \cdot LAI(l)}))$$

Integration at the canopy level

$$g_c = \int_{0}^{LAI} g_s(l) \cdot dl \qquad \qquad A_c = \int_{0}^{LAI} A(l) \cdot dl$$

!	KIDIA	Begin point in arrays		
!	KFDIA	End point in arrays		
!	KLON	Length of arrays		
!	KVTYPE	VEGETATION TYPE CORRESPONDING TO TILE		
!	KSTEP	Time step index		
!	PTSTEP	Timestep		
!	PTM1	TEMPERATURE AT T-1	K	
!	PQM1	SPECIFIC HUMIDITY AT T-1	KG/KG	
!	PAPHM1	PRESSURE AT T-1	PA	→hPa
!	PLAI	LEAF AREA INDEX	M2/M2	
!	PSRFD	DOWNWARD SHORT WAVE RADIATION FLUX AT SURFACE	W/M2	
!	PF2	SOIL MOISTURE STRESS FUNCTION	-	
!	RCO2	atmospheric CO2 concentration	kgCO2	kgAir-1 →ppm

Note: Tair is taken as an approximation of Tleaf.

EVALUATION AT FLUXNET SITES https://orchidas.lsce.ipsl.fr/dev/cams41/ctessel-co2.php

EVALUATION AT FLUXNET SITES https://orchidas.lsce.ipsl.fr/dev/cams41/ctessel-co2.php

EVALUATION AT FLUXNET SITES https://orchidas.lsce.ipsl.fr/dev/cams41/ctessel-co2.php

Next step is to optimize the parameters for the new AGF output as is done for the standard ORC.

OUTLOOKS: PHOTOSYNTHETIC CAPACITY – LEAF AGE DEPENDENCE

 V_{cmax_opt} maximum rate of carboxylation (carbon fixation) V_{jmax_opt} maximum rate of RuBP regeneration $V_{c/jmax_opt}$ are PFT-dependent constants.

 $V_{c/imax}$ is calculated based on $V_{c/imax_{opt}}$ and leaf age efficiency (*Ishida et al., 1999*).

Relative leaf efficiency e_{rel} as a function of relative leaf age a_{rel} , relative leaf age is defined as the leaf age a_i over critical leaf age A_{crit} .

OUTLOOKS: DIFFERENT PARAMETERIZATIONS OF CANOPY LIGHT TRANSMISSION

OUTLOOKS: LIGHT TRANSMISSION IN ORCHIDEE_DF

For diffuse light $I_{df,i}$, a simple Beer-Lambert equation is used $I_{df,i} = (1 - \rho)I_{df,0}e^{-k_d LAI_c_i}$ Canopy scattering

For direct-source radiation $I_{dr,i}$, the total attenuation of PPFD is presented as:

$$I_{dr,i} = (1 - \rho)I_{dr,0}e^{-\sqrt{1 - \sigma}k_b LAI_c_i}$$

The transmission of direct light $I_{dr,dr,i}$, (direct components of direct-source radiation) is presented as:

$$I_{dr,dr,i} = I_{dr,0} e^{-k_b LAI_c_i}$$

The leaf-scattered light $I_{dr,df,i}$ is presented as:

$$I_{dr,df,i} = I_{dr,i} - I_{dr,dr,i}$$

@Yuan Zhang

OUTLOOKS: CONSTRAIN GPP WITH CARBONYL SULFIDE (COS)

 $F_{cosbio} = GPP . [COS] / [CO_2] . V_{cos/co2}$

 $V_{cos/co2}$ = Leaf Relative Uptake

No COS autotrophic respiration

Maignan et al. (submitted)

